cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

uri.c (62871B)


      1/**
      2 * uri.c: set of generic URI related routines
      3 *
      4 * Reference: RFCs 3986, 2732 and 2373
      5 *
      6 * Copyright (C) 1998-2003 Daniel Veillard.  All Rights Reserved.
      7 *
      8 * Permission is hereby granted, free of charge, to any person obtaining a copy
      9 * of this software and associated documentation files (the "Software"), to deal
     10 * in the Software without restriction, including without limitation the rights
     11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     12 * copies of the Software, and to permit persons to whom the Software is
     13 * furnished to do so, subject to the following conditions:
     14 *
     15 * The above copyright notice and this permission notice shall be included in
     16 * all copies or substantial portions of the Software.
     17 *
     18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
     21 * DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
     22 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     24 *
     25 * Except as contained in this notice, the name of Daniel Veillard shall not
     26 * be used in advertising or otherwise to promote the sale, use or other
     27 * dealings in this Software without prior written authorization from him.
     28 *
     29 * daniel@veillard.com
     30 *
     31 **
     32 *
     33 * Copyright (C) 2007, 2009-2010 Red Hat, Inc.
     34 *
     35 * This library is free software; you can redistribute it and/or
     36 * modify it under the terms of the GNU Lesser General Public
     37 * License as published by the Free Software Foundation; either
     38 * version 2.1 of the License, or (at your option) any later version.
     39 *
     40 * This library is distributed in the hope that it will be useful,
     41 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     43 * Lesser General Public License for more details.
     44 *
     45 * You should have received a copy of the GNU Lesser General Public
     46 * License along with this library; if not, write to the Free Software
     47 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA
     48 *
     49 * Authors:
     50 *    Richard W.M. Jones <rjones@redhat.com>
     51 *
     52 */
     53
     54#include "qemu/osdep.h"
     55#include "qemu/cutils.h"
     56
     57#include "qemu/uri.h"
     58
     59static void uri_clean(URI *uri);
     60
     61/*
     62 * Old rule from 2396 used in legacy handling code
     63 * alpha    = lowalpha | upalpha
     64 */
     65#define IS_ALPHA(x) (IS_LOWALPHA(x) || IS_UPALPHA(x))
     66
     67/*
     68 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
     69 *            "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
     70 *            "u" | "v" | "w" | "x" | "y" | "z"
     71 */
     72
     73#define IS_LOWALPHA(x) (((x) >= 'a') && ((x) <= 'z'))
     74
     75/*
     76 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
     77 *           "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
     78 *           "U" | "V" | "W" | "X" | "Y" | "Z"
     79 */
     80#define IS_UPALPHA(x) (((x) >= 'A') && ((x) <= 'Z'))
     81
     82#ifdef IS_DIGIT
     83#undef IS_DIGIT
     84#endif
     85/*
     86 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
     87 */
     88#define IS_DIGIT(x) (((x) >= '0') && ((x) <= '9'))
     89
     90/*
     91 * alphanum = alpha | digit
     92 */
     93
     94#define IS_ALPHANUM(x) (IS_ALPHA(x) || IS_DIGIT(x))
     95
     96/*
     97 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
     98 */
     99
    100#define IS_MARK(x) (((x) == '-') || ((x) == '_') || ((x) == '.') ||            \
    101    ((x) == '!') || ((x) == '~') || ((x) == '*') || ((x) == '\'') ||           \
    102    ((x) == '(') || ((x) == ')'))
    103
    104/*
    105 * unwise = "{" | "}" | "|" | "\" | "^" | "`"
    106 */
    107
    108#define IS_UNWISE(p)                                                           \
    109    (((*(p) == '{')) || ((*(p) == '}')) || ((*(p) == '|')) ||                  \
    110     ((*(p) == '\\')) || ((*(p) == '^')) || ((*(p) == '[')) ||                 \
    111     ((*(p) == ']')) || ((*(p) == '`')))
    112/*
    113 * reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | "," |
    114 *            "[" | "]"
    115 */
    116
    117#define IS_RESERVED(x) (((x) == ';') || ((x) == '/') || ((x) == '?') ||        \
    118    ((x) == ':') || ((x) == '@') || ((x) == '&') || ((x) == '=') ||            \
    119    ((x) == '+') || ((x) == '$') || ((x) == ',') || ((x) == '[') ||            \
    120    ((x) == ']'))
    121
    122/*
    123 * unreserved = alphanum | mark
    124 */
    125
    126#define IS_UNRESERVED(x) (IS_ALPHANUM(x) || IS_MARK(x))
    127
    128/*
    129 * Skip to next pointer char, handle escaped sequences
    130 */
    131
    132#define NEXT(p) ((*p == '%') ? p += 3 : p++)
    133
    134/*
    135 * Productions from the spec.
    136 *
    137 *    authority     = server | reg_name
    138 *    reg_name      = 1*( unreserved | escaped | "$" | "," |
    139 *                        ";" | ":" | "@" | "&" | "=" | "+" )
    140 *
    141 * path          = [ abs_path | opaque_part ]
    142 */
    143
    144/************************************************************************
    145 *                                                                      *
    146 *                         RFC 3986 parser                              *
    147 *                                                                      *
    148 ************************************************************************/
    149
    150#define ISA_DIGIT(p) ((*(p) >= '0') && (*(p) <= '9'))
    151#define ISA_ALPHA(p) (((*(p) >= 'a') && (*(p) <= 'z')) ||                      \
    152                      ((*(p) >= 'A') && (*(p) <= 'Z')))
    153#define ISA_HEXDIG(p)                                                          \
    154    (ISA_DIGIT(p) || ((*(p) >= 'a') && (*(p) <= 'f')) ||                       \
    155     ((*(p) >= 'A') && (*(p) <= 'F')))
    156
    157/*
    158 *    sub-delims    = "!" / "$" / "&" / "'" / "(" / ")"
    159 *                     / "*" / "+" / "," / ";" / "="
    160 */
    161#define ISA_SUB_DELIM(p)                                                       \
    162    (((*(p) == '!')) || ((*(p) == '$')) || ((*(p) == '&')) ||                  \
    163     ((*(p) == '(')) || ((*(p) == ')')) || ((*(p) == '*')) ||                  \
    164     ((*(p) == '+')) || ((*(p) == ',')) || ((*(p) == ';')) ||                  \
    165     ((*(p) == '=')) || ((*(p) == '\'')))
    166
    167/*
    168 *    gen-delims    = ":" / "/" / "?" / "#" / "[" / "]" / "@"
    169 */
    170#define ISA_GEN_DELIM(p)                                                       \
    171    (((*(p) == ':')) || ((*(p) == '/')) || ((*(p) == '?')) ||                  \
    172     ((*(p) == '#')) || ((*(p) == '[')) || ((*(p) == ']')) ||                  \
    173     ((*(p) == '@')))
    174
    175/*
    176 *    reserved      = gen-delims / sub-delims
    177 */
    178#define ISA_RESERVED(p) (ISA_GEN_DELIM(p) || (ISA_SUB_DELIM(p)))
    179
    180/*
    181 *    unreserved    = ALPHA / DIGIT / "-" / "." / "_" / "~"
    182 */
    183#define ISA_UNRESERVED(p)                                                      \
    184    ((ISA_ALPHA(p)) || (ISA_DIGIT(p)) || ((*(p) == '-')) ||                    \
    185     ((*(p) == '.')) || ((*(p) == '_')) || ((*(p) == '~')))
    186
    187/*
    188 *    pct-encoded   = "%" HEXDIG HEXDIG
    189 */
    190#define ISA_PCT_ENCODED(p)                                                     \
    191    ((*(p) == '%') && (ISA_HEXDIG(p + 1)) && (ISA_HEXDIG(p + 2)))
    192
    193/*
    194 *    pchar         = unreserved / pct-encoded / sub-delims / ":" / "@"
    195 */
    196#define ISA_PCHAR(p)                                                           \
    197    (ISA_UNRESERVED(p) || ISA_PCT_ENCODED(p) || ISA_SUB_DELIM(p) ||            \
    198     ((*(p) == ':')) || ((*(p) == '@')))
    199
    200/**
    201 * rfc3986_parse_scheme:
    202 * @uri:  pointer to an URI structure
    203 * @str:  pointer to the string to analyze
    204 *
    205 * Parse an URI scheme
    206 *
    207 * ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
    208 *
    209 * Returns 0 or the error code
    210 */
    211static int rfc3986_parse_scheme(URI *uri, const char **str)
    212{
    213    const char *cur;
    214
    215    if (str == NULL) {
    216        return -1;
    217    }
    218
    219    cur = *str;
    220    if (!ISA_ALPHA(cur)) {
    221        return 2;
    222    }
    223    cur++;
    224    while (ISA_ALPHA(cur) || ISA_DIGIT(cur) || (*cur == '+') || (*cur == '-') ||
    225           (*cur == '.')) {
    226        cur++;
    227    }
    228    if (uri != NULL) {
    229        g_free(uri->scheme);
    230        uri->scheme = g_strndup(*str, cur - *str);
    231    }
    232    *str = cur;
    233    return 0;
    234}
    235
    236/**
    237 * rfc3986_parse_fragment:
    238 * @uri:  pointer to an URI structure
    239 * @str:  pointer to the string to analyze
    240 *
    241 * Parse the query part of an URI
    242 *
    243 * fragment      = *( pchar / "/" / "?" )
    244 * NOTE: the strict syntax as defined by 3986 does not allow '[' and ']'
    245 *       in the fragment identifier but this is used very broadly for
    246 *       xpointer scheme selection, so we are allowing it here to not break
    247 *       for example all the DocBook processing chains.
    248 *
    249 * Returns 0 or the error code
    250 */
    251static int rfc3986_parse_fragment(URI *uri, const char **str)
    252{
    253    const char *cur;
    254
    255    if (str == NULL) {
    256        return -1;
    257    }
    258
    259    cur = *str;
    260
    261    while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
    262           (*cur == '[') || (*cur == ']') ||
    263           ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
    264        NEXT(cur);
    265    }
    266    if (uri != NULL) {
    267        g_free(uri->fragment);
    268        if (uri->cleanup & 2) {
    269            uri->fragment = g_strndup(*str, cur - *str);
    270        } else {
    271            uri->fragment = uri_string_unescape(*str, cur - *str, NULL);
    272        }
    273    }
    274    *str = cur;
    275    return 0;
    276}
    277
    278/**
    279 * rfc3986_parse_query:
    280 * @uri:  pointer to an URI structure
    281 * @str:  pointer to the string to analyze
    282 *
    283 * Parse the query part of an URI
    284 *
    285 * query = *uric
    286 *
    287 * Returns 0 or the error code
    288 */
    289static int rfc3986_parse_query(URI *uri, const char **str)
    290{
    291    const char *cur;
    292
    293    if (str == NULL) {
    294        return -1;
    295    }
    296
    297    cur = *str;
    298
    299    while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
    300           ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
    301        NEXT(cur);
    302    }
    303    if (uri != NULL) {
    304        g_free(uri->query);
    305        uri->query = g_strndup(*str, cur - *str);
    306    }
    307    *str = cur;
    308    return 0;
    309}
    310
    311/**
    312 * rfc3986_parse_port:
    313 * @uri:  pointer to an URI structure
    314 * @str:  the string to analyze
    315 *
    316 * Parse a port  part and fills in the appropriate fields
    317 * of the @uri structure
    318 *
    319 * port          = *DIGIT
    320 *
    321 * Returns 0 or the error code
    322 */
    323static int rfc3986_parse_port(URI *uri, const char **str)
    324{
    325    const char *cur = *str;
    326    int port = 0;
    327
    328    if (ISA_DIGIT(cur)) {
    329        while (ISA_DIGIT(cur)) {
    330            port = port * 10 + (*cur - '0');
    331            if (port > 65535) {
    332                return 1;
    333            }
    334            cur++;
    335        }
    336        if (uri) {
    337            uri->port = port;
    338        }
    339        *str = cur;
    340        return 0;
    341    }
    342    return 1;
    343}
    344
    345/**
    346 * rfc3986_parse_user_info:
    347 * @uri:  pointer to an URI structure
    348 * @str:  the string to analyze
    349 *
    350 * Parse a user information part and fill in the appropriate fields
    351 * of the @uri structure
    352 *
    353 * userinfo      = *( unreserved / pct-encoded / sub-delims / ":" )
    354 *
    355 * Returns 0 or the error code
    356 */
    357static int rfc3986_parse_user_info(URI *uri, const char **str)
    358{
    359    const char *cur;
    360
    361    cur = *str;
    362    while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur) ||
    363           (*cur == ':')) {
    364        NEXT(cur);
    365    }
    366    if (*cur == '@') {
    367        if (uri != NULL) {
    368            g_free(uri->user);
    369            if (uri->cleanup & 2) {
    370                uri->user = g_strndup(*str, cur - *str);
    371            } else {
    372                uri->user = uri_string_unescape(*str, cur - *str, NULL);
    373            }
    374        }
    375        *str = cur;
    376        return 0;
    377    }
    378    return 1;
    379}
    380
    381/**
    382 * rfc3986_parse_dec_octet:
    383 * @str:  the string to analyze
    384 *
    385 *    dec-octet     = DIGIT                 ; 0-9
    386 *                  / %x31-39 DIGIT         ; 10-99
    387 *                  / "1" 2DIGIT            ; 100-199
    388 *                  / "2" %x30-34 DIGIT     ; 200-249
    389 *                  / "25" %x30-35          ; 250-255
    390 *
    391 * Skip a dec-octet.
    392 *
    393 * Returns 0 if found and skipped, 1 otherwise
    394 */
    395static int rfc3986_parse_dec_octet(const char **str)
    396{
    397    const char *cur = *str;
    398
    399    if (!(ISA_DIGIT(cur))) {
    400        return 1;
    401    }
    402    if (!ISA_DIGIT(cur + 1)) {
    403        cur++;
    404    } else if ((*cur != '0') && (ISA_DIGIT(cur + 1)) && (!ISA_DIGIT(cur + 2))) {
    405        cur += 2;
    406    } else if ((*cur == '1') && (ISA_DIGIT(cur + 1)) && (ISA_DIGIT(cur + 2))) {
    407        cur += 3;
    408    } else if ((*cur == '2') && (*(cur + 1) >= '0') && (*(cur + 1) <= '4') &&
    409             (ISA_DIGIT(cur + 2))) {
    410        cur += 3;
    411    } else if ((*cur == '2') && (*(cur + 1) == '5') && (*(cur + 2) >= '0') &&
    412             (*(cur + 1) <= '5')) {
    413        cur += 3;
    414    } else {
    415        return 1;
    416    }
    417    *str = cur;
    418    return 0;
    419}
    420/**
    421 * rfc3986_parse_host:
    422 * @uri:  pointer to an URI structure
    423 * @str:  the string to analyze
    424 *
    425 * Parse an host part and fills in the appropriate fields
    426 * of the @uri structure
    427 *
    428 * host          = IP-literal / IPv4address / reg-name
    429 * IP-literal    = "[" ( IPv6address / IPvFuture  ) "]"
    430 * IPv4address   = dec-octet "." dec-octet "." dec-octet "." dec-octet
    431 * reg-name      = *( unreserved / pct-encoded / sub-delims )
    432 *
    433 * Returns 0 or the error code
    434 */
    435static int rfc3986_parse_host(URI *uri, const char **str)
    436{
    437    const char *cur = *str;
    438    const char *host;
    439
    440    host = cur;
    441    /*
    442     * IPv6 and future addressing scheme are enclosed between brackets
    443     */
    444    if (*cur == '[') {
    445        cur++;
    446        while ((*cur != ']') && (*cur != 0)) {
    447            cur++;
    448        }
    449        if (*cur != ']') {
    450            return 1;
    451        }
    452        cur++;
    453        goto found;
    454    }
    455    /*
    456     * try to parse an IPv4
    457     */
    458    if (ISA_DIGIT(cur)) {
    459        if (rfc3986_parse_dec_octet(&cur) != 0) {
    460            goto not_ipv4;
    461        }
    462        if (*cur != '.') {
    463            goto not_ipv4;
    464        }
    465        cur++;
    466        if (rfc3986_parse_dec_octet(&cur) != 0) {
    467            goto not_ipv4;
    468        }
    469        if (*cur != '.') {
    470            goto not_ipv4;
    471        }
    472        if (rfc3986_parse_dec_octet(&cur) != 0) {
    473            goto not_ipv4;
    474        }
    475        if (*cur != '.') {
    476            goto not_ipv4;
    477        }
    478        if (rfc3986_parse_dec_octet(&cur) != 0) {
    479            goto not_ipv4;
    480        }
    481        goto found;
    482    not_ipv4:
    483        cur = *str;
    484    }
    485    /*
    486     * then this should be a hostname which can be empty
    487     */
    488    while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur)) {
    489        NEXT(cur);
    490    }
    491found:
    492    if (uri != NULL) {
    493        g_free(uri->authority);
    494        uri->authority = NULL;
    495        g_free(uri->server);
    496        if (cur != host) {
    497            if (uri->cleanup & 2) {
    498                uri->server = g_strndup(host, cur - host);
    499            } else {
    500                uri->server = uri_string_unescape(host, cur - host, NULL);
    501            }
    502        } else {
    503            uri->server = NULL;
    504        }
    505    }
    506    *str = cur;
    507    return 0;
    508}
    509
    510/**
    511 * rfc3986_parse_authority:
    512 * @uri:  pointer to an URI structure
    513 * @str:  the string to analyze
    514 *
    515 * Parse an authority part and fills in the appropriate fields
    516 * of the @uri structure
    517 *
    518 * authority     = [ userinfo "@" ] host [ ":" port ]
    519 *
    520 * Returns 0 or the error code
    521 */
    522static int rfc3986_parse_authority(URI *uri, const char **str)
    523{
    524    const char *cur;
    525    int ret;
    526
    527    cur = *str;
    528    /*
    529     * try to parse a userinfo and check for the trailing @
    530     */
    531    ret = rfc3986_parse_user_info(uri, &cur);
    532    if ((ret != 0) || (*cur != '@')) {
    533        cur = *str;
    534    } else {
    535        cur++;
    536    }
    537    ret = rfc3986_parse_host(uri, &cur);
    538    if (ret != 0) {
    539        return ret;
    540    }
    541    if (*cur == ':') {
    542        cur++;
    543        ret = rfc3986_parse_port(uri, &cur);
    544        if (ret != 0) {
    545            return ret;
    546        }
    547    }
    548    *str = cur;
    549    return 0;
    550}
    551
    552/**
    553 * rfc3986_parse_segment:
    554 * @str:  the string to analyze
    555 * @forbid: an optional forbidden character
    556 * @empty: allow an empty segment
    557 *
    558 * Parse a segment and fills in the appropriate fields
    559 * of the @uri structure
    560 *
    561 * segment       = *pchar
    562 * segment-nz    = 1*pchar
    563 * segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" )
    564 *               ; non-zero-length segment without any colon ":"
    565 *
    566 * Returns 0 or the error code
    567 */
    568static int rfc3986_parse_segment(const char **str, char forbid, int empty)
    569{
    570    const char *cur;
    571
    572    cur = *str;
    573    if (!ISA_PCHAR(cur)) {
    574        if (empty) {
    575            return 0;
    576        }
    577        return 1;
    578    }
    579    while (ISA_PCHAR(cur) && (*cur != forbid)) {
    580        NEXT(cur);
    581    }
    582    *str = cur;
    583    return 0;
    584}
    585
    586/**
    587 * rfc3986_parse_path_ab_empty:
    588 * @uri:  pointer to an URI structure
    589 * @str:  the string to analyze
    590 *
    591 * Parse an path absolute or empty and fills in the appropriate fields
    592 * of the @uri structure
    593 *
    594 * path-abempty  = *( "/" segment )
    595 *
    596 * Returns 0 or the error code
    597 */
    598static int rfc3986_parse_path_ab_empty(URI *uri, const char **str)
    599{
    600    const char *cur;
    601    int ret;
    602
    603    cur = *str;
    604
    605    while (*cur == '/') {
    606        cur++;
    607        ret = rfc3986_parse_segment(&cur, 0, 1);
    608        if (ret != 0) {
    609            return ret;
    610        }
    611    }
    612    if (uri != NULL) {
    613        g_free(uri->path);
    614        if (*str != cur) {
    615            if (uri->cleanup & 2) {
    616                uri->path = g_strndup(*str, cur - *str);
    617            } else {
    618                uri->path = uri_string_unescape(*str, cur - *str, NULL);
    619            }
    620        } else {
    621            uri->path = NULL;
    622        }
    623    }
    624    *str = cur;
    625    return 0;
    626}
    627
    628/**
    629 * rfc3986_parse_path_absolute:
    630 * @uri:  pointer to an URI structure
    631 * @str:  the string to analyze
    632 *
    633 * Parse an path absolute and fills in the appropriate fields
    634 * of the @uri structure
    635 *
    636 * path-absolute = "/" [ segment-nz *( "/" segment ) ]
    637 *
    638 * Returns 0 or the error code
    639 */
    640static int rfc3986_parse_path_absolute(URI *uri, const char **str)
    641{
    642    const char *cur;
    643    int ret;
    644
    645    cur = *str;
    646
    647    if (*cur != '/') {
    648        return 1;
    649    }
    650    cur++;
    651    ret = rfc3986_parse_segment(&cur, 0, 0);
    652    if (ret == 0) {
    653        while (*cur == '/') {
    654            cur++;
    655            ret = rfc3986_parse_segment(&cur, 0, 1);
    656            if (ret != 0) {
    657                return ret;
    658            }
    659        }
    660    }
    661    if (uri != NULL) {
    662        g_free(uri->path);
    663        if (cur != *str) {
    664            if (uri->cleanup & 2) {
    665                uri->path = g_strndup(*str, cur - *str);
    666            } else {
    667                uri->path = uri_string_unescape(*str, cur - *str, NULL);
    668            }
    669        } else {
    670            uri->path = NULL;
    671        }
    672    }
    673    *str = cur;
    674    return 0;
    675}
    676
    677/**
    678 * rfc3986_parse_path_rootless:
    679 * @uri:  pointer to an URI structure
    680 * @str:  the string to analyze
    681 *
    682 * Parse an path without root and fills in the appropriate fields
    683 * of the @uri structure
    684 *
    685 * path-rootless = segment-nz *( "/" segment )
    686 *
    687 * Returns 0 or the error code
    688 */
    689static int rfc3986_parse_path_rootless(URI *uri, const char **str)
    690{
    691    const char *cur;
    692    int ret;
    693
    694    cur = *str;
    695
    696    ret = rfc3986_parse_segment(&cur, 0, 0);
    697    if (ret != 0) {
    698        return ret;
    699    }
    700    while (*cur == '/') {
    701        cur++;
    702        ret = rfc3986_parse_segment(&cur, 0, 1);
    703        if (ret != 0) {
    704            return ret;
    705        }
    706    }
    707    if (uri != NULL) {
    708        g_free(uri->path);
    709        if (cur != *str) {
    710            if (uri->cleanup & 2) {
    711                uri->path = g_strndup(*str, cur - *str);
    712            } else {
    713                uri->path = uri_string_unescape(*str, cur - *str, NULL);
    714            }
    715        } else {
    716            uri->path = NULL;
    717        }
    718    }
    719    *str = cur;
    720    return 0;
    721}
    722
    723/**
    724 * rfc3986_parse_path_no_scheme:
    725 * @uri:  pointer to an URI structure
    726 * @str:  the string to analyze
    727 *
    728 * Parse an path which is not a scheme and fills in the appropriate fields
    729 * of the @uri structure
    730 *
    731 * path-noscheme = segment-nz-nc *( "/" segment )
    732 *
    733 * Returns 0 or the error code
    734 */
    735static int rfc3986_parse_path_no_scheme(URI *uri, const char **str)
    736{
    737    const char *cur;
    738    int ret;
    739
    740    cur = *str;
    741
    742    ret = rfc3986_parse_segment(&cur, ':', 0);
    743    if (ret != 0) {
    744        return ret;
    745    }
    746    while (*cur == '/') {
    747        cur++;
    748        ret = rfc3986_parse_segment(&cur, 0, 1);
    749        if (ret != 0) {
    750            return ret;
    751        }
    752    }
    753    if (uri != NULL) {
    754        g_free(uri->path);
    755        if (cur != *str) {
    756            if (uri->cleanup & 2) {
    757                uri->path = g_strndup(*str, cur - *str);
    758            } else {
    759                uri->path = uri_string_unescape(*str, cur - *str, NULL);
    760            }
    761        } else {
    762            uri->path = NULL;
    763        }
    764    }
    765    *str = cur;
    766    return 0;
    767}
    768
    769/**
    770 * rfc3986_parse_hier_part:
    771 * @uri:  pointer to an URI structure
    772 * @str:  the string to analyze
    773 *
    774 * Parse an hierarchical part and fills in the appropriate fields
    775 * of the @uri structure
    776 *
    777 * hier-part     = "//" authority path-abempty
    778 *                / path-absolute
    779 *                / path-rootless
    780 *                / path-empty
    781 *
    782 * Returns 0 or the error code
    783 */
    784static int rfc3986_parse_hier_part(URI *uri, const char **str)
    785{
    786    const char *cur;
    787    int ret;
    788
    789    cur = *str;
    790
    791    if ((*cur == '/') && (*(cur + 1) == '/')) {
    792        cur += 2;
    793        ret = rfc3986_parse_authority(uri, &cur);
    794        if (ret != 0) {
    795            return ret;
    796        }
    797        ret = rfc3986_parse_path_ab_empty(uri, &cur);
    798        if (ret != 0) {
    799            return ret;
    800        }
    801        *str = cur;
    802        return 0;
    803    } else if (*cur == '/') {
    804        ret = rfc3986_parse_path_absolute(uri, &cur);
    805        if (ret != 0) {
    806            return ret;
    807        }
    808    } else if (ISA_PCHAR(cur)) {
    809        ret = rfc3986_parse_path_rootless(uri, &cur);
    810        if (ret != 0) {
    811            return ret;
    812        }
    813    } else {
    814        /* path-empty is effectively empty */
    815        if (uri != NULL) {
    816            g_free(uri->path);
    817            uri->path = NULL;
    818        }
    819    }
    820    *str = cur;
    821    return 0;
    822}
    823
    824/**
    825 * rfc3986_parse_relative_ref:
    826 * @uri:  pointer to an URI structure
    827 * @str:  the string to analyze
    828 *
    829 * Parse an URI string and fills in the appropriate fields
    830 * of the @uri structure
    831 *
    832 * relative-ref  = relative-part [ "?" query ] [ "#" fragment ]
    833 * relative-part = "//" authority path-abempty
    834 *               / path-absolute
    835 *               / path-noscheme
    836 *               / path-empty
    837 *
    838 * Returns 0 or the error code
    839 */
    840static int rfc3986_parse_relative_ref(URI *uri, const char *str)
    841{
    842    int ret;
    843
    844    if ((*str == '/') && (*(str + 1) == '/')) {
    845        str += 2;
    846        ret = rfc3986_parse_authority(uri, &str);
    847        if (ret != 0) {
    848            return ret;
    849        }
    850        ret = rfc3986_parse_path_ab_empty(uri, &str);
    851        if (ret != 0) {
    852            return ret;
    853        }
    854    } else if (*str == '/') {
    855        ret = rfc3986_parse_path_absolute(uri, &str);
    856        if (ret != 0) {
    857            return ret;
    858        }
    859    } else if (ISA_PCHAR(str)) {
    860        ret = rfc3986_parse_path_no_scheme(uri, &str);
    861        if (ret != 0) {
    862            return ret;
    863        }
    864    } else {
    865        /* path-empty is effectively empty */
    866        if (uri != NULL) {
    867            g_free(uri->path);
    868            uri->path = NULL;
    869        }
    870    }
    871
    872    if (*str == '?') {
    873        str++;
    874        ret = rfc3986_parse_query(uri, &str);
    875        if (ret != 0) {
    876            return ret;
    877        }
    878    }
    879    if (*str == '#') {
    880        str++;
    881        ret = rfc3986_parse_fragment(uri, &str);
    882        if (ret != 0) {
    883            return ret;
    884        }
    885    }
    886    if (*str != 0) {
    887        uri_clean(uri);
    888        return 1;
    889    }
    890    return 0;
    891}
    892
    893/**
    894 * rfc3986_parse:
    895 * @uri:  pointer to an URI structure
    896 * @str:  the string to analyze
    897 *
    898 * Parse an URI string and fills in the appropriate fields
    899 * of the @uri structure
    900 *
    901 * scheme ":" hier-part [ "?" query ] [ "#" fragment ]
    902 *
    903 * Returns 0 or the error code
    904 */
    905static int rfc3986_parse(URI *uri, const char *str)
    906{
    907    int ret;
    908
    909    ret = rfc3986_parse_scheme(uri, &str);
    910    if (ret != 0) {
    911        return ret;
    912    }
    913    if (*str != ':') {
    914        return 1;
    915    }
    916    str++;
    917    ret = rfc3986_parse_hier_part(uri, &str);
    918    if (ret != 0) {
    919        return ret;
    920    }
    921    if (*str == '?') {
    922        str++;
    923        ret = rfc3986_parse_query(uri, &str);
    924        if (ret != 0) {
    925            return ret;
    926        }
    927    }
    928    if (*str == '#') {
    929        str++;
    930        ret = rfc3986_parse_fragment(uri, &str);
    931        if (ret != 0) {
    932            return ret;
    933        }
    934    }
    935    if (*str != 0) {
    936        uri_clean(uri);
    937        return 1;
    938    }
    939    return 0;
    940}
    941
    942/**
    943 * rfc3986_parse_uri_reference:
    944 * @uri:  pointer to an URI structure
    945 * @str:  the string to analyze
    946 *
    947 * Parse an URI reference string and fills in the appropriate fields
    948 * of the @uri structure
    949 *
    950 * URI-reference = URI / relative-ref
    951 *
    952 * Returns 0 or the error code
    953 */
    954static int rfc3986_parse_uri_reference(URI *uri, const char *str)
    955{
    956    int ret;
    957
    958    if (str == NULL) {
    959        return -1;
    960    }
    961    uri_clean(uri);
    962
    963    /*
    964     * Try first to parse absolute refs, then fallback to relative if
    965     * it fails.
    966     */
    967    ret = rfc3986_parse(uri, str);
    968    if (ret != 0) {
    969        uri_clean(uri);
    970        ret = rfc3986_parse_relative_ref(uri, str);
    971        if (ret != 0) {
    972            uri_clean(uri);
    973            return ret;
    974        }
    975    }
    976    return 0;
    977}
    978
    979/**
    980 * uri_parse:
    981 * @str:  the URI string to analyze
    982 *
    983 * Parse an URI based on RFC 3986
    984 *
    985 * URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
    986 *
    987 * Returns a newly built URI or NULL in case of error
    988 */
    989URI *uri_parse(const char *str)
    990{
    991    URI *uri;
    992    int ret;
    993
    994    if (str == NULL) {
    995        return NULL;
    996    }
    997    uri = uri_new();
    998    ret = rfc3986_parse_uri_reference(uri, str);
    999    if (ret) {
   1000        uri_free(uri);
   1001        return NULL;
   1002    }
   1003    return uri;
   1004}
   1005
   1006/**
   1007 * uri_parse_into:
   1008 * @uri:  pointer to an URI structure
   1009 * @str:  the string to analyze
   1010 *
   1011 * Parse an URI reference string based on RFC 3986 and fills in the
   1012 * appropriate fields of the @uri structure
   1013 *
   1014 * URI-reference = URI / relative-ref
   1015 *
   1016 * Returns 0 or the error code
   1017 */
   1018int uri_parse_into(URI *uri, const char *str)
   1019{
   1020    return rfc3986_parse_uri_reference(uri, str);
   1021}
   1022
   1023/**
   1024 * uri_parse_raw:
   1025 * @str:  the URI string to analyze
   1026 * @raw:  if 1 unescaping of URI pieces are disabled
   1027 *
   1028 * Parse an URI but allows to keep intact the original fragments.
   1029 *
   1030 * URI-reference = URI / relative-ref
   1031 *
   1032 * Returns a newly built URI or NULL in case of error
   1033 */
   1034URI *uri_parse_raw(const char *str, int raw)
   1035{
   1036    URI *uri;
   1037    int ret;
   1038
   1039    if (str == NULL) {
   1040        return NULL;
   1041    }
   1042    uri = uri_new();
   1043    if (raw) {
   1044        uri->cleanup |= 2;
   1045    }
   1046    ret = uri_parse_into(uri, str);
   1047    if (ret) {
   1048        uri_free(uri);
   1049        return NULL;
   1050    }
   1051    return uri;
   1052}
   1053
   1054/************************************************************************
   1055 *                                                                      *
   1056 *                    Generic URI structure functions                   *
   1057 *                                                                      *
   1058 ************************************************************************/
   1059
   1060/**
   1061 * uri_new:
   1062 *
   1063 * Simply creates an empty URI
   1064 *
   1065 * Returns the new structure or NULL in case of error
   1066 */
   1067URI *uri_new(void)
   1068{
   1069    return g_new0(URI, 1);
   1070}
   1071
   1072/**
   1073 * realloc2n:
   1074 *
   1075 * Function to handle properly a reallocation when saving an URI
   1076 * Also imposes some limit on the length of an URI string output
   1077 */
   1078static char *realloc2n(char *ret, int *max)
   1079{
   1080    char *temp;
   1081    int tmp;
   1082
   1083    tmp = *max * 2;
   1084    temp = g_realloc(ret, (tmp + 1));
   1085    *max = tmp;
   1086    return temp;
   1087}
   1088
   1089/**
   1090 * uri_to_string:
   1091 * @uri:  pointer to an URI
   1092 *
   1093 * Save the URI as an escaped string
   1094 *
   1095 * Returns a new string (to be deallocated by caller)
   1096 */
   1097char *uri_to_string(URI *uri)
   1098{
   1099    char *ret = NULL;
   1100    char *temp;
   1101    const char *p;
   1102    int len;
   1103    int max;
   1104
   1105    if (uri == NULL) {
   1106        return NULL;
   1107    }
   1108
   1109    max = 80;
   1110    ret = g_malloc(max + 1);
   1111    len = 0;
   1112
   1113    if (uri->scheme != NULL) {
   1114        p = uri->scheme;
   1115        while (*p != 0) {
   1116            if (len >= max) {
   1117                temp = realloc2n(ret, &max);
   1118                ret = temp;
   1119            }
   1120            ret[len++] = *p++;
   1121        }
   1122        if (len >= max) {
   1123            temp = realloc2n(ret, &max);
   1124            ret = temp;
   1125        }
   1126        ret[len++] = ':';
   1127    }
   1128    if (uri->opaque != NULL) {
   1129        p = uri->opaque;
   1130        while (*p != 0) {
   1131            if (len + 3 >= max) {
   1132                temp = realloc2n(ret, &max);
   1133                ret = temp;
   1134            }
   1135            if (IS_RESERVED(*(p)) || IS_UNRESERVED(*(p))) {
   1136                ret[len++] = *p++;
   1137            } else {
   1138                int val = *(unsigned char *)p++;
   1139                int hi = val / 0x10, lo = val % 0x10;
   1140                ret[len++] = '%';
   1141                ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1142                ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1143            }
   1144        }
   1145    } else {
   1146        if (uri->server != NULL) {
   1147            if (len + 3 >= max) {
   1148                temp = realloc2n(ret, &max);
   1149                ret = temp;
   1150            }
   1151            ret[len++] = '/';
   1152            ret[len++] = '/';
   1153            if (uri->user != NULL) {
   1154                p = uri->user;
   1155                while (*p != 0) {
   1156                    if (len + 3 >= max) {
   1157                        temp = realloc2n(ret, &max);
   1158                        ret = temp;
   1159                    }
   1160                    if ((IS_UNRESERVED(*(p))) || ((*(p) == ';')) ||
   1161                        ((*(p) == ':')) || ((*(p) == '&')) || ((*(p) == '=')) ||
   1162                        ((*(p) == '+')) || ((*(p) == '$')) || ((*(p) == ','))) {
   1163                        ret[len++] = *p++;
   1164                    } else {
   1165                        int val = *(unsigned char *)p++;
   1166                        int hi = val / 0x10, lo = val % 0x10;
   1167                        ret[len++] = '%';
   1168                        ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1169                        ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1170                    }
   1171                }
   1172                if (len + 3 >= max) {
   1173                    temp = realloc2n(ret, &max);
   1174                    ret = temp;
   1175                }
   1176                ret[len++] = '@';
   1177            }
   1178            p = uri->server;
   1179            while (*p != 0) {
   1180                if (len >= max) {
   1181                    temp = realloc2n(ret, &max);
   1182                    ret = temp;
   1183                }
   1184                ret[len++] = *p++;
   1185            }
   1186            if (uri->port > 0) {
   1187                if (len + 10 >= max) {
   1188                    temp = realloc2n(ret, &max);
   1189                    ret = temp;
   1190                }
   1191                len += snprintf(&ret[len], max - len, ":%d", uri->port);
   1192            }
   1193        } else if (uri->authority != NULL) {
   1194            if (len + 3 >= max) {
   1195                temp = realloc2n(ret, &max);
   1196                ret = temp;
   1197            }
   1198            ret[len++] = '/';
   1199            ret[len++] = '/';
   1200            p = uri->authority;
   1201            while (*p != 0) {
   1202                if (len + 3 >= max) {
   1203                    temp = realloc2n(ret, &max);
   1204                    ret = temp;
   1205                }
   1206                if ((IS_UNRESERVED(*(p))) || ((*(p) == '$')) ||
   1207                    ((*(p) == ',')) || ((*(p) == ';')) || ((*(p) == ':')) ||
   1208                    ((*(p) == '@')) || ((*(p) == '&')) || ((*(p) == '=')) ||
   1209                    ((*(p) == '+'))) {
   1210                    ret[len++] = *p++;
   1211                } else {
   1212                    int val = *(unsigned char *)p++;
   1213                    int hi = val / 0x10, lo = val % 0x10;
   1214                    ret[len++] = '%';
   1215                    ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1216                    ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1217                }
   1218            }
   1219        } else if (uri->scheme != NULL) {
   1220            if (len + 3 >= max) {
   1221                temp = realloc2n(ret, &max);
   1222                ret = temp;
   1223            }
   1224            ret[len++] = '/';
   1225            ret[len++] = '/';
   1226        }
   1227        if (uri->path != NULL) {
   1228            p = uri->path;
   1229            /*
   1230             * the colon in file:///d: should not be escaped or
   1231             * Windows accesses fail later.
   1232             */
   1233            if ((uri->scheme != NULL) && (p[0] == '/') &&
   1234                (((p[1] >= 'a') && (p[1] <= 'z')) ||
   1235                 ((p[1] >= 'A') && (p[1] <= 'Z'))) &&
   1236                (p[2] == ':') && (!strcmp(uri->scheme, "file"))) {
   1237                if (len + 3 >= max) {
   1238                    temp = realloc2n(ret, &max);
   1239                    ret = temp;
   1240                }
   1241                ret[len++] = *p++;
   1242                ret[len++] = *p++;
   1243                ret[len++] = *p++;
   1244            }
   1245            while (*p != 0) {
   1246                if (len + 3 >= max) {
   1247                    temp = realloc2n(ret, &max);
   1248                    ret = temp;
   1249                }
   1250                if ((IS_UNRESERVED(*(p))) || ((*(p) == '/')) ||
   1251                    ((*(p) == ';')) || ((*(p) == '@')) || ((*(p) == '&')) ||
   1252                    ((*(p) == '=')) || ((*(p) == '+')) || ((*(p) == '$')) ||
   1253                    ((*(p) == ','))) {
   1254                    ret[len++] = *p++;
   1255                } else {
   1256                    int val = *(unsigned char *)p++;
   1257                    int hi = val / 0x10, lo = val % 0x10;
   1258                    ret[len++] = '%';
   1259                    ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1260                    ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1261                }
   1262            }
   1263        }
   1264        if (uri->query != NULL) {
   1265            if (len + 1 >= max) {
   1266                temp = realloc2n(ret, &max);
   1267                ret = temp;
   1268            }
   1269            ret[len++] = '?';
   1270            p = uri->query;
   1271            while (*p != 0) {
   1272                if (len + 1 >= max) {
   1273                    temp = realloc2n(ret, &max);
   1274                    ret = temp;
   1275                }
   1276                ret[len++] = *p++;
   1277            }
   1278        }
   1279    }
   1280    if (uri->fragment != NULL) {
   1281        if (len + 3 >= max) {
   1282            temp = realloc2n(ret, &max);
   1283            ret = temp;
   1284        }
   1285        ret[len++] = '#';
   1286        p = uri->fragment;
   1287        while (*p != 0) {
   1288            if (len + 3 >= max) {
   1289                temp = realloc2n(ret, &max);
   1290                ret = temp;
   1291            }
   1292            if ((IS_UNRESERVED(*(p))) || (IS_RESERVED(*(p)))) {
   1293                ret[len++] = *p++;
   1294            } else {
   1295                int val = *(unsigned char *)p++;
   1296                int hi = val / 0x10, lo = val % 0x10;
   1297                ret[len++] = '%';
   1298                ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
   1299                ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
   1300            }
   1301        }
   1302    }
   1303    if (len >= max) {
   1304        temp = realloc2n(ret, &max);
   1305        ret = temp;
   1306    }
   1307    ret[len] = 0;
   1308    return ret;
   1309}
   1310
   1311/**
   1312 * uri_clean:
   1313 * @uri:  pointer to an URI
   1314 *
   1315 * Make sure the URI struct is free of content
   1316 */
   1317static void uri_clean(URI *uri)
   1318{
   1319    if (uri == NULL) {
   1320        return;
   1321    }
   1322
   1323    g_free(uri->scheme);
   1324    uri->scheme = NULL;
   1325    g_free(uri->server);
   1326    uri->server = NULL;
   1327    g_free(uri->user);
   1328    uri->user = NULL;
   1329    g_free(uri->path);
   1330    uri->path = NULL;
   1331    g_free(uri->fragment);
   1332    uri->fragment = NULL;
   1333    g_free(uri->opaque);
   1334    uri->opaque = NULL;
   1335    g_free(uri->authority);
   1336    uri->authority = NULL;
   1337    g_free(uri->query);
   1338    uri->query = NULL;
   1339}
   1340
   1341/**
   1342 * uri_free:
   1343 * @uri:  pointer to an URI, NULL is ignored
   1344 *
   1345 * Free up the URI struct
   1346 */
   1347void uri_free(URI *uri)
   1348{
   1349    uri_clean(uri);
   1350    g_free(uri);
   1351}
   1352
   1353/************************************************************************
   1354 *                                                                      *
   1355 *                           Helper functions                           *
   1356 *                                                                      *
   1357 ************************************************************************/
   1358
   1359/**
   1360 * normalize_uri_path:
   1361 * @path:  pointer to the path string
   1362 *
   1363 * Applies the 5 normalization steps to a path string--that is, RFC 2396
   1364 * Section 5.2, steps 6.c through 6.g.
   1365 *
   1366 * Normalization occurs directly on the string, no new allocation is done
   1367 *
   1368 * Returns 0 or an error code
   1369 */
   1370static int normalize_uri_path(char *path)
   1371{
   1372    char *cur, *out;
   1373
   1374    if (path == NULL) {
   1375        return -1;
   1376    }
   1377
   1378    /* Skip all initial "/" chars.  We want to get to the beginning of the
   1379     * first non-empty segment.
   1380     */
   1381    cur = path;
   1382    while (cur[0] == '/') {
   1383        ++cur;
   1384    }
   1385    if (cur[0] == '\0') {
   1386        return 0;
   1387    }
   1388
   1389    /* Keep everything we've seen so far.  */
   1390    out = cur;
   1391
   1392    /*
   1393     * Analyze each segment in sequence for cases (c) and (d).
   1394     */
   1395    while (cur[0] != '\0') {
   1396        /*
   1397         * c) All occurrences of "./", where "." is a complete path segment,
   1398         *    are removed from the buffer string.
   1399         */
   1400        if ((cur[0] == '.') && (cur[1] == '/')) {
   1401            cur += 2;
   1402            /* '//' normalization should be done at this point too */
   1403            while (cur[0] == '/') {
   1404                cur++;
   1405            }
   1406            continue;
   1407        }
   1408
   1409        /*
   1410         * d) If the buffer string ends with "." as a complete path segment,
   1411         *    that "." is removed.
   1412         */
   1413        if ((cur[0] == '.') && (cur[1] == '\0')) {
   1414            break;
   1415        }
   1416
   1417        /* Otherwise keep the segment.  */
   1418        while (cur[0] != '/') {
   1419            if (cur[0] == '\0') {
   1420                goto done_cd;
   1421            }
   1422            (out++)[0] = (cur++)[0];
   1423        }
   1424        /* nomalize // */
   1425        while ((cur[0] == '/') && (cur[1] == '/')) {
   1426            cur++;
   1427        }
   1428
   1429        (out++)[0] = (cur++)[0];
   1430    }
   1431done_cd:
   1432    out[0] = '\0';
   1433
   1434    /* Reset to the beginning of the first segment for the next sequence.  */
   1435    cur = path;
   1436    while (cur[0] == '/') {
   1437        ++cur;
   1438    }
   1439    if (cur[0] == '\0') {
   1440        return 0;
   1441    }
   1442
   1443    /*
   1444     * Analyze each segment in sequence for cases (e) and (f).
   1445     *
   1446     * e) All occurrences of "<segment>/../", where <segment> is a
   1447     *    complete path segment not equal to "..", are removed from the
   1448     *    buffer string.  Removal of these path segments is performed
   1449     *    iteratively, removing the leftmost matching pattern on each
   1450     *    iteration, until no matching pattern remains.
   1451     *
   1452     * f) If the buffer string ends with "<segment>/..", where <segment>
   1453     *    is a complete path segment not equal to "..", that
   1454     *    "<segment>/.." is removed.
   1455     *
   1456     * To satisfy the "iterative" clause in (e), we need to collapse the
   1457     * string every time we find something that needs to be removed.  Thus,
   1458     * we don't need to keep two pointers into the string: we only need a
   1459     * "current position" pointer.
   1460     */
   1461    while (1) {
   1462        char *segp, *tmp;
   1463
   1464        /* At the beginning of each iteration of this loop, "cur" points to
   1465         * the first character of the segment we want to examine.
   1466         */
   1467
   1468        /* Find the end of the current segment.  */
   1469        segp = cur;
   1470        while ((segp[0] != '/') && (segp[0] != '\0')) {
   1471            ++segp;
   1472        }
   1473
   1474        /* If this is the last segment, we're done (we need at least two
   1475         * segments to meet the criteria for the (e) and (f) cases).
   1476         */
   1477        if (segp[0] == '\0') {
   1478            break;
   1479        }
   1480
   1481        /* If the first segment is "..", or if the next segment _isn't_ "..",
   1482         * keep this segment and try the next one.
   1483         */
   1484        ++segp;
   1485        if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur + 3)) ||
   1486            ((segp[0] != '.') || (segp[1] != '.') ||
   1487             ((segp[2] != '/') && (segp[2] != '\0')))) {
   1488            cur = segp;
   1489            continue;
   1490        }
   1491
   1492        /* If we get here, remove this segment and the next one and back up
   1493         * to the previous segment (if there is one), to implement the
   1494         * "iteratively" clause.  It's pretty much impossible to back up
   1495         * while maintaining two pointers into the buffer, so just compact
   1496         * the whole buffer now.
   1497         */
   1498
   1499        /* If this is the end of the buffer, we're done.  */
   1500        if (segp[2] == '\0') {
   1501            cur[0] = '\0';
   1502            break;
   1503        }
   1504        /* Valgrind complained, strcpy(cur, segp + 3); */
   1505        /* string will overlap, do not use strcpy */
   1506        tmp = cur;
   1507        segp += 3;
   1508        while ((*tmp++ = *segp++) != 0) {
   1509            /* No further work */
   1510        }
   1511
   1512        /* If there are no previous segments, then keep going from here.  */
   1513        segp = cur;
   1514        while ((segp > path) && ((--segp)[0] == '/')) {
   1515            /* No further work */
   1516        }
   1517        if (segp == path) {
   1518            continue;
   1519        }
   1520
   1521        /* "segp" is pointing to the end of a previous segment; find it's
   1522         * start.  We need to back up to the previous segment and start
   1523         * over with that to handle things like "foo/bar/../..".  If we
   1524         * don't do this, then on the first pass we'll remove the "bar/..",
   1525         * but be pointing at the second ".." so we won't realize we can also
   1526         * remove the "foo/..".
   1527         */
   1528        cur = segp;
   1529        while ((cur > path) && (cur[-1] != '/')) {
   1530            --cur;
   1531        }
   1532    }
   1533    out[0] = '\0';
   1534
   1535    /*
   1536     * g) If the resulting buffer string still begins with one or more
   1537     *    complete path segments of "..", then the reference is
   1538     *    considered to be in error. Implementations may handle this
   1539     *    error by retaining these components in the resolved path (i.e.,
   1540     *    treating them as part of the final URI), by removing them from
   1541     *    the resolved path (i.e., discarding relative levels above the
   1542     *    root), or by avoiding traversal of the reference.
   1543     *
   1544     * We discard them from the final path.
   1545     */
   1546    if (path[0] == '/') {
   1547        cur = path;
   1548        while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.') &&
   1549               ((cur[3] == '/') || (cur[3] == '\0'))) {
   1550            cur += 3;
   1551        }
   1552
   1553        if (cur != path) {
   1554            out = path;
   1555            while (cur[0] != '\0') {
   1556                (out++)[0] = (cur++)[0];
   1557            }
   1558            out[0] = 0;
   1559        }
   1560    }
   1561
   1562    return 0;
   1563}
   1564
   1565static int is_hex(char c)
   1566{
   1567    if (((c >= '0') && (c <= '9')) || ((c >= 'a') && (c <= 'f')) ||
   1568        ((c >= 'A') && (c <= 'F'))) {
   1569        return 1;
   1570    }
   1571    return 0;
   1572}
   1573
   1574/**
   1575 * uri_string_unescape:
   1576 * @str:  the string to unescape
   1577 * @len:   the length in bytes to unescape (or <= 0 to indicate full string)
   1578 * @target:  optional destination buffer
   1579 *
   1580 * Unescaping routine, but does not check that the string is an URI. The
   1581 * output is a direct unsigned char translation of %XX values (no encoding)
   1582 * Note that the length of the result can only be smaller or same size as
   1583 * the input string.
   1584 *
   1585 * Returns a copy of the string, but unescaped, will return NULL only in case
   1586 * of error
   1587 */
   1588char *uri_string_unescape(const char *str, int len, char *target)
   1589{
   1590    char *ret, *out;
   1591    const char *in;
   1592
   1593    if (str == NULL) {
   1594        return NULL;
   1595    }
   1596    if (len <= 0) {
   1597        len = strlen(str);
   1598    }
   1599    if (len < 0) {
   1600        return NULL;
   1601    }
   1602
   1603    if (target == NULL) {
   1604        ret = g_malloc(len + 1);
   1605    } else {
   1606        ret = target;
   1607    }
   1608    in = str;
   1609    out = ret;
   1610    while (len > 0) {
   1611        if ((len > 2) && (*in == '%') && (is_hex(in[1])) && (is_hex(in[2]))) {
   1612            in++;
   1613            if ((*in >= '0') && (*in <= '9')) {
   1614                *out = (*in - '0');
   1615            } else if ((*in >= 'a') && (*in <= 'f')) {
   1616                *out = (*in - 'a') + 10;
   1617            } else if ((*in >= 'A') && (*in <= 'F')) {
   1618                *out = (*in - 'A') + 10;
   1619            }
   1620            in++;
   1621            if ((*in >= '0') && (*in <= '9')) {
   1622                *out = *out * 16 + (*in - '0');
   1623            } else if ((*in >= 'a') && (*in <= 'f')) {
   1624                *out = *out * 16 + (*in - 'a') + 10;
   1625            } else if ((*in >= 'A') && (*in <= 'F')) {
   1626                *out = *out * 16 + (*in - 'A') + 10;
   1627            }
   1628            in++;
   1629            len -= 3;
   1630            out++;
   1631        } else {
   1632            *out++ = *in++;
   1633            len--;
   1634        }
   1635    }
   1636    *out = 0;
   1637    return ret;
   1638}
   1639
   1640/**
   1641 * uri_string_escape:
   1642 * @str:  string to escape
   1643 * @list: exception list string of chars not to escape
   1644 *
   1645 * This routine escapes a string to hex, ignoring reserved characters (a-z)
   1646 * and the characters in the exception list.
   1647 *
   1648 * Returns a new escaped string or NULL in case of error.
   1649 */
   1650char *uri_string_escape(const char *str, const char *list)
   1651{
   1652    char *ret, ch;
   1653    char *temp;
   1654    const char *in;
   1655    int len, out;
   1656
   1657    if (str == NULL) {
   1658        return NULL;
   1659    }
   1660    if (str[0] == 0) {
   1661        return g_strdup(str);
   1662    }
   1663    len = strlen(str);
   1664    if (!(len > 0)) {
   1665        return NULL;
   1666    }
   1667
   1668    len += 20;
   1669    ret = g_malloc(len);
   1670    in = str;
   1671    out = 0;
   1672    while (*in != 0) {
   1673        if (len - out <= 3) {
   1674            temp = realloc2n(ret, &len);
   1675            ret = temp;
   1676        }
   1677
   1678        ch = *in;
   1679
   1680        if ((ch != '@') && (!IS_UNRESERVED(ch)) && (!strchr(list, ch))) {
   1681            unsigned char val;
   1682            ret[out++] = '%';
   1683            val = ch >> 4;
   1684            if (val <= 9) {
   1685                ret[out++] = '0' + val;
   1686            } else {
   1687                ret[out++] = 'A' + val - 0xA;
   1688            }
   1689            val = ch & 0xF;
   1690            if (val <= 9) {
   1691                ret[out++] = '0' + val;
   1692            } else {
   1693                ret[out++] = 'A' + val - 0xA;
   1694            }
   1695            in++;
   1696        } else {
   1697            ret[out++] = *in++;
   1698        }
   1699    }
   1700    ret[out] = 0;
   1701    return ret;
   1702}
   1703
   1704/************************************************************************
   1705 *                                                                      *
   1706 *                           Public functions                           *
   1707 *                                                                      *
   1708 ************************************************************************/
   1709
   1710/**
   1711 * uri_resolve:
   1712 * @URI:  the URI instance found in the document
   1713 * @base:  the base value
   1714 *
   1715 * Computes he final URI of the reference done by checking that
   1716 * the given URI is valid, and building the final URI using the
   1717 * base URI. This is processed according to section 5.2 of the
   1718 * RFC 2396
   1719 *
   1720 * 5.2. Resolving Relative References to Absolute Form
   1721 *
   1722 * Returns a new URI string (to be freed by the caller) or NULL in case
   1723 *         of error.
   1724 */
   1725char *uri_resolve(const char *uri, const char *base)
   1726{
   1727    char *val = NULL;
   1728    int ret, len, indx, cur, out;
   1729    URI *ref = NULL;
   1730    URI *bas = NULL;
   1731    URI *res = NULL;
   1732
   1733    /*
   1734     * 1) The URI reference is parsed into the potential four components and
   1735     *    fragment identifier, as described in Section 4.3.
   1736     *
   1737     *    NOTE that a completely empty URI is treated by modern browsers
   1738     *    as a reference to "." rather than as a synonym for the current
   1739     *    URI.  Should we do that here?
   1740     */
   1741    if (uri == NULL) {
   1742        ret = -1;
   1743    } else {
   1744        if (*uri) {
   1745            ref = uri_new();
   1746            ret = uri_parse_into(ref, uri);
   1747        } else {
   1748            ret = 0;
   1749        }
   1750    }
   1751    if (ret != 0) {
   1752        goto done;
   1753    }
   1754    if ((ref != NULL) && (ref->scheme != NULL)) {
   1755        /*
   1756         * The URI is absolute don't modify.
   1757         */
   1758        val = g_strdup(uri);
   1759        goto done;
   1760    }
   1761    if (base == NULL) {
   1762        ret = -1;
   1763    } else {
   1764        bas = uri_new();
   1765        ret = uri_parse_into(bas, base);
   1766    }
   1767    if (ret != 0) {
   1768        if (ref) {
   1769            val = uri_to_string(ref);
   1770        }
   1771        goto done;
   1772    }
   1773    if (ref == NULL) {
   1774        /*
   1775         * the base fragment must be ignored
   1776         */
   1777        g_free(bas->fragment);
   1778        bas->fragment = NULL;
   1779        val = uri_to_string(bas);
   1780        goto done;
   1781    }
   1782
   1783    /*
   1784     * 2) If the path component is empty and the scheme, authority, and
   1785     *    query components are undefined, then it is a reference to the
   1786     *    current document and we are done.  Otherwise, the reference URI's
   1787     *    query and fragment components are defined as found (or not found)
   1788     *    within the URI reference and not inherited from the base URI.
   1789     *
   1790     *    NOTE that in modern browsers, the parsing differs from the above
   1791     *    in the following aspect:  the query component is allowed to be
   1792     *    defined while still treating this as a reference to the current
   1793     *    document.
   1794     */
   1795    res = uri_new();
   1796    if ((ref->scheme == NULL) && (ref->path == NULL) &&
   1797        ((ref->authority == NULL) && (ref->server == NULL))) {
   1798        res->scheme = g_strdup(bas->scheme);
   1799        if (bas->authority != NULL) {
   1800            res->authority = g_strdup(bas->authority);
   1801        } else if (bas->server != NULL) {
   1802            res->server = g_strdup(bas->server);
   1803            res->user = g_strdup(bas->user);
   1804            res->port = bas->port;
   1805        }
   1806        res->path = g_strdup(bas->path);
   1807        if (ref->query != NULL) {
   1808            res->query = g_strdup(ref->query);
   1809        } else {
   1810            res->query = g_strdup(bas->query);
   1811        }
   1812        res->fragment = g_strdup(ref->fragment);
   1813        goto step_7;
   1814    }
   1815
   1816    /*
   1817     * 3) If the scheme component is defined, indicating that the reference
   1818     *    starts with a scheme name, then the reference is interpreted as an
   1819     *    absolute URI and we are done.  Otherwise, the reference URI's
   1820     *    scheme is inherited from the base URI's scheme component.
   1821     */
   1822    if (ref->scheme != NULL) {
   1823        val = uri_to_string(ref);
   1824        goto done;
   1825    }
   1826    res->scheme = g_strdup(bas->scheme);
   1827
   1828    res->query = g_strdup(ref->query);
   1829    res->fragment = g_strdup(ref->fragment);
   1830
   1831    /*
   1832     * 4) If the authority component is defined, then the reference is a
   1833     *    network-path and we skip to step 7.  Otherwise, the reference
   1834     *    URI's authority is inherited from the base URI's authority
   1835     *    component, which will also be undefined if the URI scheme does not
   1836     *    use an authority component.
   1837     */
   1838    if ((ref->authority != NULL) || (ref->server != NULL)) {
   1839        if (ref->authority != NULL) {
   1840            res->authority = g_strdup(ref->authority);
   1841        } else {
   1842            res->server = g_strdup(ref->server);
   1843            res->user = g_strdup(ref->user);
   1844            res->port = ref->port;
   1845        }
   1846        res->path = g_strdup(ref->path);
   1847        goto step_7;
   1848    }
   1849    if (bas->authority != NULL) {
   1850        res->authority = g_strdup(bas->authority);
   1851    } else if (bas->server != NULL) {
   1852        res->server = g_strdup(bas->server);
   1853        res->user = g_strdup(bas->user);
   1854        res->port = bas->port;
   1855    }
   1856
   1857    /*
   1858     * 5) If the path component begins with a slash character ("/"), then
   1859     *    the reference is an absolute-path and we skip to step 7.
   1860     */
   1861    if ((ref->path != NULL) && (ref->path[0] == '/')) {
   1862        res->path = g_strdup(ref->path);
   1863        goto step_7;
   1864    }
   1865
   1866    /*
   1867     * 6) If this step is reached, then we are resolving a relative-path
   1868     *    reference.  The relative path needs to be merged with the base
   1869     *    URI's path.  Although there are many ways to do this, we will
   1870     *    describe a simple method using a separate string buffer.
   1871     *
   1872     * Allocate a buffer large enough for the result string.
   1873     */
   1874    len = 2; /* extra / and 0 */
   1875    if (ref->path != NULL) {
   1876        len += strlen(ref->path);
   1877    }
   1878    if (bas->path != NULL) {
   1879        len += strlen(bas->path);
   1880    }
   1881    res->path = g_malloc(len);
   1882    res->path[0] = 0;
   1883
   1884    /*
   1885     * a) All but the last segment of the base URI's path component is
   1886     *    copied to the buffer.  In other words, any characters after the
   1887     *    last (right-most) slash character, if any, are excluded.
   1888     */
   1889    cur = 0;
   1890    out = 0;
   1891    if (bas->path != NULL) {
   1892        while (bas->path[cur] != 0) {
   1893            while ((bas->path[cur] != 0) && (bas->path[cur] != '/')) {
   1894                cur++;
   1895            }
   1896            if (bas->path[cur] == 0) {
   1897                break;
   1898            }
   1899
   1900            cur++;
   1901            while (out < cur) {
   1902                res->path[out] = bas->path[out];
   1903                out++;
   1904            }
   1905        }
   1906    }
   1907    res->path[out] = 0;
   1908
   1909    /*
   1910     * b) The reference's path component is appended to the buffer
   1911     *    string.
   1912     */
   1913    if (ref->path != NULL && ref->path[0] != 0) {
   1914        indx = 0;
   1915        /*
   1916         * Ensure the path includes a '/'
   1917         */
   1918        if ((out == 0) && (bas->server != NULL)) {
   1919            res->path[out++] = '/';
   1920        }
   1921        while (ref->path[indx] != 0) {
   1922            res->path[out++] = ref->path[indx++];
   1923        }
   1924    }
   1925    res->path[out] = 0;
   1926
   1927    /*
   1928     * Steps c) to h) are really path normalization steps
   1929     */
   1930    normalize_uri_path(res->path);
   1931
   1932step_7:
   1933
   1934    /*
   1935     * 7) The resulting URI components, including any inherited from the
   1936     *    base URI, are recombined to give the absolute form of the URI
   1937     *    reference.
   1938     */
   1939    val = uri_to_string(res);
   1940
   1941done:
   1942    uri_free(ref);
   1943    uri_free(bas);
   1944    uri_free(res);
   1945    return val;
   1946}
   1947
   1948/**
   1949 * uri_resolve_relative:
   1950 * @URI:  the URI reference under consideration
   1951 * @base:  the base value
   1952 *
   1953 * Expresses the URI of the reference in terms relative to the
   1954 * base.  Some examples of this operation include:
   1955 *     base = "http://site1.com/docs/book1.html"
   1956 *        URI input                        URI returned
   1957 *     docs/pic1.gif                    pic1.gif
   1958 *     docs/img/pic1.gif                img/pic1.gif
   1959 *     img/pic1.gif                     ../img/pic1.gif
   1960 *     http://site1.com/docs/pic1.gif   pic1.gif
   1961 *     http://site2.com/docs/pic1.gif   http://site2.com/docs/pic1.gif
   1962 *
   1963 *     base = "docs/book1.html"
   1964 *        URI input                        URI returned
   1965 *     docs/pic1.gif                    pic1.gif
   1966 *     docs/img/pic1.gif                img/pic1.gif
   1967 *     img/pic1.gif                     ../img/pic1.gif
   1968 *     http://site1.com/docs/pic1.gif   http://site1.com/docs/pic1.gif
   1969 *
   1970 *
   1971 * Note: if the URI reference is really weird or complicated, it may be
   1972 *       worthwhile to first convert it into a "nice" one by calling
   1973 *       uri_resolve (using 'base') before calling this routine,
   1974 *       since this routine (for reasonable efficiency) assumes URI has
   1975 *       already been through some validation.
   1976 *
   1977 * Returns a new URI string (to be freed by the caller) or NULL in case
   1978 * error.
   1979 */
   1980char *uri_resolve_relative(const char *uri, const char *base)
   1981{
   1982    char *val = NULL;
   1983    int ret;
   1984    int ix;
   1985    int pos = 0;
   1986    int nbslash = 0;
   1987    int len;
   1988    URI *ref = NULL;
   1989    URI *bas = NULL;
   1990    char *bptr, *uptr, *vptr;
   1991    int remove_path = 0;
   1992
   1993    if ((uri == NULL) || (*uri == 0)) {
   1994        return NULL;
   1995    }
   1996
   1997    /*
   1998     * First parse URI into a standard form
   1999     */
   2000    ref = uri_new();
   2001    /* If URI not already in "relative" form */
   2002    if (uri[0] != '.') {
   2003        ret = uri_parse_into(ref, uri);
   2004        if (ret != 0) {
   2005            goto done; /* Error in URI, return NULL */
   2006        }
   2007    } else {
   2008        ref->path = g_strdup(uri);
   2009    }
   2010
   2011    /*
   2012     * Next parse base into the same standard form
   2013     */
   2014    if ((base == NULL) || (*base == 0)) {
   2015        val = g_strdup(uri);
   2016        goto done;
   2017    }
   2018    bas = uri_new();
   2019    if (base[0] != '.') {
   2020        ret = uri_parse_into(bas, base);
   2021        if (ret != 0) {
   2022            goto done; /* Error in base, return NULL */
   2023        }
   2024    } else {
   2025        bas->path = g_strdup(base);
   2026    }
   2027
   2028    /*
   2029     * If the scheme / server on the URI differs from the base,
   2030     * just return the URI
   2031     */
   2032    if ((ref->scheme != NULL) &&
   2033        ((bas->scheme == NULL) || (strcmp(bas->scheme, ref->scheme)) ||
   2034         (strcmp(bas->server, ref->server)))) {
   2035        val = g_strdup(uri);
   2036        goto done;
   2037    }
   2038    if (bas->path == ref->path ||
   2039        (bas->path && ref->path && !strcmp(bas->path, ref->path))) {
   2040        val = g_strdup("");
   2041        goto done;
   2042    }
   2043    if (bas->path == NULL) {
   2044        val = g_strdup(ref->path);
   2045        goto done;
   2046    }
   2047    if (ref->path == NULL) {
   2048        ref->path = (char *)"/";
   2049        remove_path = 1;
   2050    }
   2051
   2052    /*
   2053     * At this point (at last!) we can compare the two paths
   2054     *
   2055     * First we take care of the special case where either of the
   2056     * two path components may be missing (bug 316224)
   2057     */
   2058    if (bas->path == NULL) {
   2059        if (ref->path != NULL) {
   2060            uptr = ref->path;
   2061            if (*uptr == '/') {
   2062                uptr++;
   2063            }
   2064            /* exception characters from uri_to_string */
   2065            val = uri_string_escape(uptr, "/;&=+$,");
   2066        }
   2067        goto done;
   2068    }
   2069    bptr = bas->path;
   2070    if (ref->path == NULL) {
   2071        for (ix = 0; bptr[ix] != 0; ix++) {
   2072            if (bptr[ix] == '/') {
   2073                nbslash++;
   2074            }
   2075        }
   2076        uptr = NULL;
   2077        len = 1; /* this is for a string terminator only */
   2078    } else {
   2079        /*
   2080         * Next we compare the two strings and find where they first differ
   2081         */
   2082        if ((ref->path[pos] == '.') && (ref->path[pos + 1] == '/')) {
   2083            pos += 2;
   2084        }
   2085        if ((*bptr == '.') && (bptr[1] == '/')) {
   2086            bptr += 2;
   2087        } else if ((*bptr == '/') && (ref->path[pos] != '/')) {
   2088            bptr++;
   2089        }
   2090        while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0)) {
   2091            pos++;
   2092        }
   2093
   2094        if (bptr[pos] == ref->path[pos]) {
   2095            val = g_strdup("");
   2096            goto done; /* (I can't imagine why anyone would do this) */
   2097        }
   2098
   2099        /*
   2100         * In URI, "back up" to the last '/' encountered.  This will be the
   2101         * beginning of the "unique" suffix of URI
   2102         */
   2103        ix = pos;
   2104        if ((ref->path[ix] == '/') && (ix > 0)) {
   2105            ix--;
   2106        } else if ((ref->path[ix] == 0) && (ix > 1)
   2107                && (ref->path[ix - 1] == '/')) {
   2108            ix -= 2;
   2109        }
   2110        for (; ix > 0; ix--) {
   2111            if (ref->path[ix] == '/') {
   2112                break;
   2113            }
   2114        }
   2115        if (ix == 0) {
   2116            uptr = ref->path;
   2117        } else {
   2118            ix++;
   2119            uptr = &ref->path[ix];
   2120        }
   2121
   2122        /*
   2123         * In base, count the number of '/' from the differing point
   2124         */
   2125        if (bptr[pos] != ref->path[pos]) { /* check for trivial URI == base */
   2126            for (; bptr[ix] != 0; ix++) {
   2127                if (bptr[ix] == '/') {
   2128                    nbslash++;
   2129                }
   2130            }
   2131        }
   2132        len = strlen(uptr) + 1;
   2133    }
   2134
   2135    if (nbslash == 0) {
   2136        if (uptr != NULL) {
   2137            /* exception characters from uri_to_string */
   2138            val = uri_string_escape(uptr, "/;&=+$,");
   2139        }
   2140        goto done;
   2141    }
   2142
   2143    /*
   2144     * Allocate just enough space for the returned string -
   2145     * length of the remainder of the URI, plus enough space
   2146     * for the "../" groups, plus one for the terminator
   2147     */
   2148    val = g_malloc(len + 3 * nbslash);
   2149    vptr = val;
   2150    /*
   2151     * Put in as many "../" as needed
   2152     */
   2153    for (; nbslash > 0; nbslash--) {
   2154        *vptr++ = '.';
   2155        *vptr++ = '.';
   2156        *vptr++ = '/';
   2157    }
   2158    /*
   2159     * Finish up with the end of the URI
   2160     */
   2161    if (uptr != NULL) {
   2162        if ((vptr > val) && (len > 0) && (uptr[0] == '/') &&
   2163            (vptr[-1] == '/')) {
   2164            memcpy(vptr, uptr + 1, len - 1);
   2165            vptr[len - 2] = 0;
   2166        } else {
   2167            memcpy(vptr, uptr, len);
   2168            vptr[len - 1] = 0;
   2169        }
   2170    } else {
   2171        vptr[len - 1] = 0;
   2172    }
   2173
   2174    /* escape the freshly-built path */
   2175    vptr = val;
   2176    /* exception characters from uri_to_string */
   2177    val = uri_string_escape(vptr, "/;&=+$,");
   2178    g_free(vptr);
   2179
   2180done:
   2181    /*
   2182     * Free the working variables
   2183     */
   2184    if (remove_path != 0) {
   2185        ref->path = NULL;
   2186    }
   2187    uri_free(ref);
   2188    uri_free(bas);
   2189
   2190    return val;
   2191}
   2192
   2193/*
   2194 * Utility functions to help parse and assemble query strings.
   2195 */
   2196
   2197struct QueryParams *query_params_new(int init_alloc)
   2198{
   2199    struct QueryParams *ps;
   2200
   2201    if (init_alloc <= 0) {
   2202        init_alloc = 1;
   2203    }
   2204
   2205    ps = g_new(QueryParams, 1);
   2206    ps->n = 0;
   2207    ps->alloc = init_alloc;
   2208    ps->p = g_new(QueryParam, ps->alloc);
   2209
   2210    return ps;
   2211}
   2212
   2213/* Ensure there is space to store at least one more parameter
   2214 * at the end of the set.
   2215 */
   2216static int query_params_append(struct QueryParams *ps, const char *name,
   2217                               const char *value)
   2218{
   2219    if (ps->n >= ps->alloc) {
   2220        ps->p = g_renew(QueryParam, ps->p, ps->alloc * 2);
   2221        ps->alloc *= 2;
   2222    }
   2223
   2224    ps->p[ps->n].name = g_strdup(name);
   2225    ps->p[ps->n].value = g_strdup(value);
   2226    ps->p[ps->n].ignore = 0;
   2227    ps->n++;
   2228
   2229    return 0;
   2230}
   2231
   2232void query_params_free(struct QueryParams *ps)
   2233{
   2234    int i;
   2235
   2236    for (i = 0; i < ps->n; ++i) {
   2237        g_free(ps->p[i].name);
   2238        g_free(ps->p[i].value);
   2239    }
   2240    g_free(ps->p);
   2241    g_free(ps);
   2242}
   2243
   2244struct QueryParams *query_params_parse(const char *query)
   2245{
   2246    struct QueryParams *ps;
   2247    const char *end, *eq;
   2248
   2249    ps = query_params_new(0);
   2250    if (!query || query[0] == '\0') {
   2251        return ps;
   2252    }
   2253
   2254    while (*query) {
   2255        char *name = NULL, *value = NULL;
   2256
   2257        /* Find the next separator, or end of the string. */
   2258        end = strchr(query, '&');
   2259        if (!end) {
   2260            end = qemu_strchrnul(query, ';');
   2261        }
   2262
   2263        /* Find the first '=' character between here and end. */
   2264        eq = strchr(query, '=');
   2265        if (eq && eq >= end) {
   2266            eq = NULL;
   2267        }
   2268
   2269        /* Empty section (eg. "&&"). */
   2270        if (end == query) {
   2271            goto next;
   2272        }
   2273
   2274        /* If there is no '=' character, then we have just "name"
   2275         * and consistent with CGI.pm we assume value is "".
   2276         */
   2277        else if (!eq) {
   2278            name = uri_string_unescape(query, end - query, NULL);
   2279            value = NULL;
   2280        }
   2281        /* Or if we have "name=" here (works around annoying
   2282         * problem when calling uri_string_unescape with len = 0).
   2283         */
   2284        else if (eq + 1 == end) {
   2285            name = uri_string_unescape(query, eq - query, NULL);
   2286            value = g_new0(char, 1);
   2287        }
   2288        /* If the '=' character is at the beginning then we have
   2289         * "=value" and consistent with CGI.pm we _ignore_ this.
   2290         */
   2291        else if (query == eq) {
   2292            goto next;
   2293        }
   2294
   2295        /* Otherwise it's "name=value". */
   2296        else {
   2297            name = uri_string_unescape(query, eq - query, NULL);
   2298            value = uri_string_unescape(eq + 1, end - (eq + 1), NULL);
   2299        }
   2300
   2301        /* Append to the parameter set. */
   2302        query_params_append(ps, name, value);
   2303        g_free(name);
   2304        g_free(value);
   2305
   2306    next:
   2307        query = end;
   2308        if (*query) {
   2309            query++; /* skip '&' separator */
   2310        }
   2311    }
   2312
   2313    return ps;
   2314}