1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
#include "cachepc.h"
static cacheline *build_cache_ds(cache_ctx *ctx, cacheline **cacheline_ptr_arr);
static void build_randomized_list_for_cache_set(cache_ctx *ctx, cacheline **cacheline_ptr_arr);
static cacheline **allocate_cache_ds(cache_ctx *ctx);
static uint16_t get_virt_cache_set(cache_ctx *ctx, void *ptr);
static void *aligned_alloc(size_t alignment, size_t size);
void
cachepc_init_counters(void)
{
uint32_t event, event_no, event_mask;
uint64_t reg_addr;
/* SEE: https://developer.amd.com/resources/developer-guides-manuals (PPR 17H 31H, P.166)
*
* performance event selection is done via 0xC001_020X with X = (0..A)[::2]
* performance event reading is done viea 0XC001_020X with X = (1..B)[::2]
*
* 6 slots total
*/
reg_addr = 0xc0010200; /* first slot */
event_no = 0x64;
event_mask = 0x08;
event = event_no | (event_mask << 8);
event |= (1<< 17); /* OsUserMode bit */
event |= (1 << 22); /* enable performance counter */
printk(KERN_WARNING "CachePC: Initialized event %d\n", event);
asm volatile ("wrmsr" : : "c"(reg_addr), "a"(event), "d"(0x00));
reg_addr = 0xc0010202;
event_no = 0x64;
event_mask = 0xC8;
event = event_no | (event_mask << 8);
event |= (1 << 17); /* OsUserMode bit */
event |= (1 << 22); /* enable performance counter */
printk(KERN_WARNING "CachePC: Initialized event %d\n", event);
asm volatile ("wrmsr" : : "c"(reg_addr), "a"(event), "d"(0x00));
}
cache_ctx *
cachepc_get_ctx(cache_level cache_level)
{
cache_ctx *ctx;
// printk(KERN_WARNING "CachePC: Getting ctx..\n");
ctx = kzalloc(sizeof(cache_ctx), GFP_KERNEL);
BUG_ON(ctx == NULL);
BUG_ON(cache_level != L1);
if (cache_level == L1) {
ctx->addressing = L1_ADDRESSING;
ctx->sets = L1_SETS;
ctx->associativity = L1_ASSOCIATIVITY;
ctx->access_time = L1_ACCESS_TIME;
} else if (cache_level == L2) {
ctx->addressing = L2_ADDRESSING;
ctx->sets = L2_SETS;
ctx->associativity = L2_ASSOCIATIVITY;
ctx->access_time = L2_ACCESS_TIME;
} else {
return NULL;
}
ctx->cache_level = cache_level;
ctx->nr_of_cachelines = ctx->sets * ctx->associativity;
ctx->set_size = CACHELINE_SIZE * ctx->associativity;
ctx->cache_size = ctx->sets * ctx->set_size;
// printk(KERN_WARNING "CachePC: Getting ctx done\n");
return ctx;
}
/*
* Initialises the complete cache data structure for the given context
*/
cacheline *
cachepc_prepare_ds(cache_ctx *ctx)
{
cacheline **cacheline_ptr_arr;
cacheline *cache_ds;
//printk(KERN_WARNING "CachePC: Preparing ds..\n");
cacheline_ptr_arr = allocate_cache_ds(ctx);
cache_ds = build_cache_ds(ctx, cacheline_ptr_arr);
kfree(cacheline_ptr_arr);
// printk(KERN_WARNING "CachePC: Preparing ds done\n");
return cache_ds;
}
void
cachepc_save_msrmts(cacheline *head, const char *prefix, int index)
{
char filename[256];
snprintf(filename, sizeof(filename), "%s.%i", prefix, index);
}
void
cachepc_print_msrmts(cacheline *head)
{
cacheline *curr_cl;
curr_cl = head;
do {
if (IS_FIRST(curr_cl->flags)) {
printk(KERN_WARNING "CachePC: Count for cache set %i: %llu\n",
curr_cl->cache_set, curr_cl->count);
}
curr_cl = curr_cl->prev;
} while (curr_cl != head);
}
void *
remove_cache_set(cache_ctx *ctx, void *ptr)
{
return (void *) (((uintptr_t) ptr) & ~SET_MASK(ctx->sets));
}
void
cachepc_release_ds(cache_ctx *ctx, cacheline *ds)
{
kfree(remove_cache_set(ctx, ds));
}
void
cachepc_release_ctx(cache_ctx *ctx)
{
kfree(ctx);
}
/*
* Create a randomized doubly linked list with the following structure:
* set A <--> set B <--> ... <--> set X <--> set A
* where each set is one of the cache sets, in a random order.
* The sets are a doubly linked list of cachelines themselves:
* set A:
* line[A + x0 * #sets] <--> line[A + x1 * #sets] <--> ...
* where x0, x1, ..., xD is a random permutation of 1, 2, ..., D
* and D = Associativity = | cache set |
*/
cacheline *build_cache_ds(cache_ctx *ctx, cacheline **cl_ptr_arr) {
cacheline **cl_ptr_arr_sorted;
cacheline *curr_cl, *next_cl;
cacheline *cache_ds;
uint32_t *idx_per_set;
uint32_t idx_curr_set, set_offset;
uint32_t i, j, set, set_len;
uint32_t *idx_map;
idx_per_set = kzalloc(ctx->sets * sizeof(uint32_t), GFP_KERNEL);
BUG_ON(idx_per_set == NULL);
cl_ptr_arr_sorted = kzalloc(ctx->nr_of_cachelines * sizeof(cacheline *), GFP_KERNEL);
BUG_ON(cl_ptr_arr_sorted == NULL);
set_len = ctx->associativity;
for (i = 0; i < ctx->nr_of_cachelines; ++i) {
set_offset = cl_ptr_arr[i]->cache_set * set_len;
idx_curr_set = idx_per_set[cl_ptr_arr[i]->cache_set];
cl_ptr_arr_sorted[set_offset + idx_curr_set] = cl_ptr_arr[i];
idx_per_set[cl_ptr_arr[i]->cache_set] += 1;
}
// Build doubly linked list for every set
for (set = 0; set < ctx->sets; ++set) {
set_offset = set * set_len;
build_randomized_list_for_cache_set(ctx, cl_ptr_arr_sorted + set_offset);
}
// Relink the sets among each other
idx_map = kzalloc(ctx->sets * sizeof(uint32_t), GFP_KERNEL);
BUG_ON(idx_map == NULL);
gen_random_indices(idx_map, ctx->sets);
curr_cl = cl_ptr_arr_sorted[idx_map[0] * set_len]->prev;
for (j = 0; j < ctx->sets; ++j) {
curr_cl->next = cl_ptr_arr_sorted[idx_map[(j + 1) % ctx->sets] * set_len];
next_cl = curr_cl->next->prev;
curr_cl->next->prev = curr_cl;
curr_cl = next_cl;
}
cache_ds = cl_ptr_arr_sorted[idx_map[0] * set_len];
kfree(cl_ptr_arr_sorted);
kfree(idx_per_set);
kfree(idx_map);
return cache_ds;
}
/*
* Helper function to build a randomised list of cacheline structs for a set
*/
void build_randomized_list_for_cache_set(cache_ctx *ctx, cacheline **cacheline_ptr_arr)
{
cacheline *curr_cl;
uint32_t len, *idx_map;
uint16_t i;
len = ctx->associativity;
idx_map = kzalloc(len * sizeof(uint32_t), GFP_KERNEL);
BUG_ON(idx_map == NULL);
gen_random_indices(idx_map, len);
for (i = 0; i < len; ++i) {
curr_cl = cacheline_ptr_arr[idx_map[i]];
curr_cl->next = cacheline_ptr_arr[idx_map[(i + 1) % len]];
curr_cl->prev = cacheline_ptr_arr[idx_map[(len - 1 + i) % len]];
curr_cl->count = 0;
if (idx_map[i] == 0) {
curr_cl->flags = SET_FIRST(DEFAULT_FLAGS);
curr_cl->prev->flags = SET_LAST(DEFAULT_FLAGS);
} else {
curr_cl->flags = curr_cl->flags | DEFAULT_FLAGS;
}
}
kfree(idx_map);
}
/*
* Allocate a data structure that fills the complete cache, i.e. consisting
* of `associativity` many cache lines for each cache set.
*/
cacheline **
allocate_cache_ds(cache_ctx *ctx)
{
cacheline **cl_ptr_arr, *cl_arr;
uint32_t i;
cl_ptr_arr = kzalloc(ctx->nr_of_cachelines * sizeof(cacheline *), GFP_KERNEL);
BUG_ON(cl_ptr_arr == NULL);
BUG_ON(ctx->addressing != VIRTUAL);
// For virtual addressing, allocating a consecutive chunk of memory is enough
cl_arr = aligned_alloc(PAGE_SIZE, ctx->cache_size);
BUG_ON(cl_arr == NULL);
for (i = 0; i < ctx->nr_of_cachelines; ++i) {
cl_ptr_arr[i] = cl_arr + i;
cl_ptr_arr[i]->cache_set = get_virt_cache_set(ctx, cl_ptr_arr[i]);
}
return cl_ptr_arr;
}
uint16_t
get_virt_cache_set(cache_ctx *ctx, void *ptr)
{
return (uint16_t) ((((uintptr_t) ptr) & SET_MASK(ctx->sets)) / CACHELINE_SIZE);
}
void *
aligned_alloc(size_t alignment, size_t size)
{
void *p;
if (size % alignment != 0)
size = size - (size % alignment) + alignment;
p = kzalloc(size, GFP_KERNEL);
BUG_ON(((uintptr_t) p) % alignment != 0);
return p;
}
|