1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
#pragma once
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include "asm.h"
#include "cache_types.h"
#include "util.h"
cache_ctx *cachepc_get_ctx(cache_level cl);
cacheline *cachepc_prepare_ds(cache_ctx *ctx);
void cachepc_save_msrmt(cacheline *head, const char *prefix, int index);
void cachepc_print_msrmt(cacheline *head);
__attribute__((always_inline))
static inline cacheline *cachepc_prime(cacheline *head);
__attribute__((always_inline))
static inline cacheline *cachepc_prime_rev(cacheline *head);
__attribute__((always_inline))
static inline cacheline *cachepc_probe_set(cacheline *curr_cl);
__attribute__((always_inline))
static inline cacheline *cachepc_probe(cacheline *head);
/*
* Prime phase: fill the target cache (encoded in the size of the data structure)
* with the prepared data structure, i.e. with attacker data.
*/
static inline cacheline *
cachepc_prime(cacheline *head)
{
cacheline *curr_cl;
cachepc_cpuid();
curr_cl = head;
do {
curr_cl = curr_cl->next;
cachepc_mfence();
} while(curr_cl != head);
cachepc_cpuid();
return curr_cl->prev;
}
/*
* Same as prime, but in the reverse direction, i.e. the same direction that probe
* uses. This is beneficial for the following scenarios:
* - L1:
* - Trigger collision chain-reaction to amplify an evicted set (but this has
* the downside of more noisy measurements).
* - L2:
* - Always use this for L2, otherwise the first cache sets will still reside
* in L1 unless the victim filled L1 completely. In this case, an eviction
* has randomly (depending on where the cache set is placed in the randomised
* data structure) the following effect:
* A) An evicted set is L2_ACCESS_TIME - L1_ACCESS_TIME slower
* B) An evicted set is L3_ACCESS_TIME - L2_ACCESS_TIME slower
*/
static inline cacheline *
cachepc_prime_rev(cacheline *head)
{
cacheline *curr_cl;
cachepc_cpuid();
curr_cl = head;
do {
curr_cl = curr_cl->prev;
cachepc_mfence();
} while(curr_cl != head);
cachepc_cpuid();
return curr_cl->prev;
}
static inline cacheline *
cachepc_probe_set(cacheline *curr_cl)
{
uint64_t pre1, pre2, pre3;
uint64_t post1, post2, post3;
cacheline *next_cl;
pre1 = cachepc_readpmc(0);
pre2 = cachepc_readpmc(1);
pre3 = cachepc_readpmc(2);
cachepc_mfence();
asm volatile(
"mov 8(%[curr_cl]), %%rax \n\t" // +8
"mov 8(%%rax), %%rcx \n\t" // +16
"mov 8(%%rcx), %%rax \n\t" // +24
"mov 8(%%rax), %%rcx \n\t" // +32
"mov 8(%%rcx), %%rax \n\t" // +40
"mov 8(%%rax), %%rcx \n\t" // +48
"mov 8(%%rcx), %[curr_cl_out] \n\t" // +56
"mov 8(%[curr_cl_out]), %[next_cl_out] \n\t" // +64
: [next_cl_out] "=r" (next_cl),
[curr_cl_out] "=r" (curr_cl)
: [curr_cl] "r" (curr_cl)
: "rax", "rcx"
);
cachepc_mfence();
cachepc_cpuid();
post1 = cachepc_readpmc(0);
cachepc_cpuid();
post2 = cachepc_readpmc(1);
cachepc_cpuid();
post3 = cachepc_readpmc(2);
cachepc_cpuid();
/* works across size boundary */
curr_cl->count = 0;
curr_cl->count += post1 - pre1;
curr_cl->count += post2 - pre2;
curr_cl->count += post3 - pre3;
return next_cl;
}
static inline cacheline *
cachepc_probe(cacheline *head)
{
cacheline *curr_cs;
curr_cs = head;
do {
curr_cs = cachepc_probe_set(curr_cs);
} while (__builtin_expect(curr_cs != head, 1));
return curr_cs->next;
}
|