1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
#define _GNU_SOURCE
#include "test/kvm.h"
#include "test/util.h"
#include "cachepc/uapi.h"
#include <linux/psp-sev.h>
#include <linux/kvm.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <sys/user.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>
#include <dirent.h>
#include <assert.h>
#include <errno.h>
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <string.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#define TARGET_CORE 2
#define SECONDARY_CORE 3
extern uint8_t guest_start[];
extern uint8_t guest_stop[];
uint8_t *
read_counts()
{
uint8_t *counts;
int ret;
counts = malloc(L1_SETS * sizeof(uint8_t));
if (!counts) err(1, "malloc");
ret = ioctl(kvm_dev, KVM_CPC_READ_COUNTS, counts);
if (ret) err(1, "ioctl KVM_CPC_READ_COUNTS");
return counts;
}
uint64_t
monitor(struct kvm *kvm, bool baseline)
{
struct cpc_event event;
uint8_t counts[64];
int ret;
/* Get page fault info */
ret = ioctl(kvm_dev, KVM_CPC_POLL_EVENT, &event);
if (ret && errno == EAGAIN) return 0;
if (ret) err(1, "ioctl KVM_CPC_POLL_EVENT");
if (event.type != CPC_EVENT_TRACK_STEP)
errx(1, "unexpected event type %i", event.type);
ret = ioctl(kvm_dev, KVM_CPC_READ_COUNTS, counts);
if (ret) err(1, "ioctl KVM_CPC_READ_COUNTS");
printf("Event: cnt:%llu rip:%lu inst:%llu data:%llu retired:%llu\n",
event.step.fault_count, snp_dbg_decrypt_rip(kvm->vmfd),
event.step.fault_gfns[0], event.step.fault_gfns[1],
event.step.retinst);
print_counts(counts);
printf("\n");
ret = ioctl(kvm_dev, KVM_CPC_ACK_EVENT, &event.id);
if (ret) err(1, "ioctl KVM_CPC_ACK_EVENT");
return 1;
}
int
main(int argc, const char **argv)
{
struct kvm kvm;
uint8_t baseline[L1_SETS];
struct cpc_event event;
uint64_t eventcnt;
pid_t ppid, pid;
uint32_t arg;
int ret;
setvbuf(stdout, NULL, _IONBF, 0);
pin_process(0, TARGET_CORE, true);
kvm_setup_init();
sev_snp_kvm_init(&kvm, L1_SIZE * 2, guest_start, guest_stop);
/* reset kernel module state */
ret = ioctl(kvm_dev, KVM_CPC_RESET, NULL);
if (ret < 0) err(1, "ioctl KVM_CPC_RESET");
ppid = getpid();
if ((pid = fork())) {
if (pid < 0) err(1, "fork");
sleep(1); /* give time for child to pin other core */
printf("VM start\n");
do {
ret = ioctl(kvm.vcpufd, KVM_RUN, NULL);
if (ret < 0) err(1, "KVM_RUN");
if (kvm.run->exit_reason == KVM_EXIT_HLT)
printf("VM halt\n");
} while (kvm.run->exit_reason == KVM_EXIT_HLT);
printf("VM exit\n");
} else {
pin_process(0, SECONDARY_CORE, true);
/* capture baseline by just letting it fault over and over */
arg = CPC_TRACK_FAULT_NO_RUN;
ret = ioctl(kvm_dev, KVM_CPC_TRACK_MODE, &arg);
if (ret) err(1, "ioctl KVM_CPC_TRACK_MODE");
/* calculate baseline while running vm */
arg = true;
ret = ioctl(kvm_dev, KVM_CPC_CALC_BASELINE, &arg);
if (ret) err(1, "ioctl KVM_CPC_CALC_BASELINE");
printf("Monitor ready\n");
/* run vm while baseline is calculated */
eventcnt = 0;
while (eventcnt < 50) {
eventcnt += monitor(&kvm, true);
}
ret = ioctl(kvm_dev, KVM_CPC_VM_REQ_PAUSE);
if (ret) err(1, "ioctl KVM_CPC_VM_REQ_PAUSE");
while (1) {
ret = ioctl(kvm_dev, KVM_CPC_POLL_EVENT, &event);
if (ret && errno == EAGAIN) continue;
if (ret) err(1, "ioctl KVM_CPC_POLL_EVENT");
if (event.type == CPC_EVENT_PAUSE) break;
printf("Skipping non-pause event..\n");
ret = ioctl(kvm_dev, KVM_CPC_ACK_EVENT, &event.id);
if (ret) err(1, "ioctl KVM_CPC_ACK_EVENT");
}
arg = false;
ret = ioctl(kvm_dev, KVM_CPC_CALC_BASELINE, &arg);
if (ret) err(1, "ioctl KVM_CPC_CALC_BASELINE");
ret = ioctl(kvm_dev, KVM_CPC_READ_BASELINE, baseline);
if (ret) err(1, "ioctl KVM_CPC_READ_BASELINE");
printf("\nBaseline:\n");
print_counts(baseline);
printf("\n");
print_counts_raw(baseline);
printf("\n\n");
arg = true;
ret = ioctl(kvm_dev, KVM_CPC_APPLY_BASELINE, &arg);
if (ret) err(1, "ioctl KMV_CPC_APPLY_BASELINE");
/* single step and log all accessed pages */
arg = CPC_TRACK_FULL;
ret = ioctl(kvm_dev, KVM_CPC_TRACK_MODE, &arg);
if (ret) err(1, "ioctl KVM_CPC_TRACK_MODE");
ret = ioctl(kvm_dev, KVM_CPC_ACK_EVENT, &event.id);
if (ret) err(1, "ioctl KVM_CPC_ACK_EVENT");
eventcnt = 0;
while (eventcnt < 50) {
eventcnt += monitor(&kvm, false);
}
kill(ppid, SIGINT);
exit(0);
}
kvm_deinit(&kvm);
kvm_setup_deinit();
}
|