1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
/// 386. Lexicographical Numbers (Medium)
///
/// Given an integer n, return all the numbers in the range [1, n] sorted in
/// lexicographical order.
///
/// You must write an algorithm that runs in O(n) time and uses O(1) extra
/// space.
///
/// *Example 1:*
///
/// *Input:* n = 13
/// *Output:* [1,10,11,12,13,2,3,4,5,6,7,8,9]
///
/// *Example 2:*
///
/// *Input:* n = 2
/// *Output:* [1,2]
///
/// *Constraints:*
///
/// * 1 <= n <= 5 * 104
///
use leetcode::arg;
struct Solution {}
impl Solution {
fn radd(vec: &mut Vec<i32>, c: i32, n: i32) {
vec.push(c);
for d in 0..=9 {
let p = c * 10 + d;
if p > n {
break;
}
Self::radd(vec, p, n);
}
}
pub fn lexical_order(n: i32) -> Vec<i32> {
let mut vec = Vec::new();
for d in 1..=std::cmp::min(9, n) {
Self::radd(&mut vec, d, n);
}
vec
}
}
pub fn main() {
println!("{:?}", Solution::lexical_order(arg(1).parse().unwrap()));
}
#[cfg(test)]
mod tests {
use crate::Solution;
use leetcode::vi;
#[test]
fn examples() {
assert_eq!(
Solution::lexical_order(13),
vi("[1,10,11,12,13,2,3,4,5,6,7,8,9]")
);
assert_eq!(Solution::lexical_order(2), vi("[1,2]"));
}
}
|